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Intermittency in chaotic systems and Renyi entropies 
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Dipartimento di Fisica, Universiti ‘La Sapienza’, Piazzale Aldo Moro 2, 1-00185 Roma, 
Italy and GNSM-CISM Uniti di Roma, Roma, Italy 

Received 7 February 1986, in final form 6 May 1986 

Abstract. We show that the Renyi entropies characterise the temporal intermittency in 
chaotic systems and are linked to a set of generalised Lyapounov exponents related to the 
time fluctuations of the responses to slight perturbations on the trajectory. It is also briefly 
indicated how a simple extension of a numerical algorithm proposed by Grassberger and 
Procaccia allows us to compute these entropies from a signal. 

One of the more relevant problems in the numerical and experimental study of 
non-linear dynamical systems is the quantitative characterisation of chaotic signals. 
For example, the Kolmogorov entropy h and the spectrum of the Lyapounov exponents 
{Ai} provide a quantitative way of measuring how chaotic a system is. Indeed the 
Lyapounov exponents characterise the instabilities of nearby orbits while the Kol- 
mogorov entropy gives a rough indication of the predictability time. Nevertheless one 
generally has variations of the chaoticity degree along a given trajectory and this 
intermittency can have a great relevance in some cases. 

A classical example can be found in the Pomeau and Manneville (1980) mechanism 
for the onset of turbulence where bursts of strong chaoticity interrupt regular motion. 

It is, however, clear that the Lyapounov exponents cannot measure the degree of 
intermittency because of their ‘global’ character. In a previous paper (Benzi et a1 
1985) we have therefore introduced a set of exponents L ( q )  which generalise the 
maximal Lyapounov exponent A ,  in order to give a quantitative description of this 
phenomenon. It is also shown (Benzi et a1 1985) that the L ( q )  can be regarded as a 
free energy F (  p )  at the inverse temperature p = 1 - q in the thermodynamical formalism 
for axiom A one-dimensional systems (Bowen 1975). 

The purpose of this letter is to show that a more complete characterisation of 
intermittency is achieved by means of a set of generalised entropies K, ,  first introduced 
by Renyi (1970). It is remarkable that these entropies can be computed also from an 
experimental signal with a simple extension of an algorithm recently proposed by 
Grassberger and Procaccia (1983) for the calculation of the K,. 

To be explicit let us consider a non-linear dynamical system with F degrees of 
freedom whose evolution x ( t )  is given by 

x = f ( x )  1;X€RF. (1) 
Our discussion can, however, be applied to an experimental signal or to the evolution 
given by a map as well. 

Let us consider the discrete sequence 

Xi = X (  i T )  i = 1,2, . . . , M >> 1 
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and let PE ( i l  , . . . i d )  be the probability that x1 fall in the hypercube (with edge E )  i l  , 
x2 in the hypercube i2 and so on. The Renyi entropies are defined by 

and the Kolmogorov entropy is 

It is trivial to see that h = K1 = lim,+l K ,  and, moreover, to show, by general theorems 
of probability (Feller 1971), that K ,  monotonically decreased with q. Our purpose is 
now to show how the Renyi entropies K ,  characterise the temporal intermittency as 
well as the generalised Lyapounov exponents (introduced in Benzi e? a1 (1985)) do. 

Indeed non-constant Renyi entropies imply, in some sense, a multifractal structure 
(Benzi et a1 1984) in the trajectory space, i.e. an anomalous scaling behaviour. We 
want to develop this idea in another context (Paladin et a1 1986) since this letter is 
dedicated to showing how detailed information on the chaotic behaviour can be 
extracted by quantities which are accessible either in experiments or in numerical 
computations. 

Let us therefore recall that we define the response R after a time T to a perturbation 
acting at a time t as 

where l(f) is given by the linearised evolution of system (1): 

B =  (Df)S (Df), =af;/axj. ( 5 )  

A - lim T-'(ln R , ( T ) )  

The maximal Lyapounov exponent A I  is (Benettin et al 1980) 

(6) I - 7-* 

where ( ) indicates a time average on the trajectory. 
The exponents L ( q )  are related to the moments of the response: 

L ( q )  = lim 7-l ln(RP(7)). (7) 
7-03 

Note that dL/dql,,, = A l .  Moreover the degree of intermittency can be quantified by 
the deviation from the linear non-intermittent case L( q )  = A q. 

The extension of this idea to all the Lyapounov exponents is quite simple. Let us 
consider n tangent vectors (1 6 n s F)$"' ,  . . . ,('"' with different initial conditions and 
the same evolution equation (5); then we can define an n-order response as 

where A indicates the inner product. 

exponents is given by 
Let us then recall (Benettin er a1 1980) that the sum of the first n Lyapounov 
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where A 1  5 A2a. . . AF. It is therefore natural to introduce the new exponents 

L ( " ) ( q )  = lim r- ' ln(RI"'( r ) q )  (10) 
r-.m 

whose properties are analogous to the L(q) properties (i.e. L'"'(q) are concave functions 
for any n). Moreover we see that 

dr"( = i A i  
dq q = o  i = l  

and for non-intermittent behaviour 

L'"'(q) = Ai q. 
( i : ,  ) 

Let us call n* the number of non-negative Lyapounov exponents (i.e. A,* = 0, A n * + l  < 0); 
the Pesin relation h = XY21 Ai (Pesin 1976) can be written as 

This relation is commonly believed to hold in almost all general systems and in the 
following we shall assume its validity. 

We must stress that our definitions of Lyapounov exponents, Renyi entropies and 
so on have to be understood as referring to the natural measure. With this term we 
naively mean that the probability P,( i l . .  . i d )  is deduced by the (chaotic) temporal 
evolution of the system. 

Equation (1 1) is the analogue of the relation 

A l = - l  dL . 

Moreover in the non-intermittent case: 

dq q = o  

L'"*'(q) = qln* = qh (12) 

and the deviations from (12) give an indication of the degree of intermittency. 
It is reasonable to look for a relation which links L'"*'(q) to K q .  Let us indicate 

by M,(x(  t ) ,  At)  the 'quantity' of trajectories around x( t ' )  which remain at a distance 
smaller than E from x( t ' )  for t < t ' <  t + At. 

This naive definition can be made more precise without any difficulty (Grassberger 
1986) but it is sufficient for our purposes. 

We see that the Me decay exponentially in At  because of the divergence of the 
n*-dimensional volume of the tangent space ( F  - n* directions are in fact contracting). 

For the time sequence notation t = ir and A t  = rd, so that 

where n { " ( ~ )  indicates the static part (at A t  =0)  and is defined as a density of points 
around x( t )  

I 
nj"(&) =- e ( E - ( X i - X j ( ) .  M - 1 j # i  
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The moments of (13)  can be obtained by a time average (i.e. (1/M) Z Z ,  ( - )) on the 
trajectory: 

(15 )  ( 1  M ,  ( A  t ) 1 ,) a exp( TdL'"*)( - q ) )(I M, ( A  r = 0) 1,). 
The static part also has an anomalous scaling 

with @( q) defined in Paladin and Vulpiani (1984) and Benzi er al (1984). 
It is perhaps interesting to note that d,  = @(q - l ) / (q  - 1 )  are sometimes called 

Renyi dimensions and d ,  coincides with the information dimension while do coincides 
with the fractal dimension. 

The relation between L'"*'(q) and K, can now be easily achieved by noting that 

(16) 

with i l  centred around x,, i2 around x2 and so on. Moreover ZiI...id P , ( i l . .  . id) '  can 
be written in terms of n $ d ' ( ~ ) :  

M,(x(t), A t ) a P E ( i i , .  . ., i d )  

Comparing (18), (16) and (15 )  with (2) we finally obtain 

-L'"*' ( -q)=  qK,+,. 

It is worth remarking that L'"'(q), as defined in ( lo ) ,  can be measured only in 
numerical experiments while L'"*'(q) (and therefore K , )  can be extracted by an 
(experimental) chaotic signal. The algorithm is a slight extension of a method intro- 
duced by Grassberger and Procaccia (1983) for the computation of K,. This procedure 
allows us to avoid the use of box counting methods which are practically impossible 
whenever F > 3 .  Equation (18) indeed shows that the numerical computation of CLq'( E )  

requires the same computer time for each q value. 
One can then extrapolate the corresponding Renyi entropy K, by the limit 

1 C p ) (  E )  
K, = lim lim lim - 

7-0 E-0 d + m  T(q - 1 )  In[ cLq;;)(&)]* 
We wish here to also recall that Cohen and Procaccia (1985) proposed an analogous 
method for computing the metric entropy h (in the limit q + 1 )  directly from 

Finally we note that all the quantities involved in (20) can also be obtained, at least 
in principle, by an experimental signal. 

We thank A Provenzale and G Turchetti for stimulating discussions. 
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